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~oTa~~-Ha OCHOBe ~~HO~eHO~Or~YeCKO~ TeOp~Er--TepMOAMHaJtr?Ka H~O6paT~IM~ 

I’lPOU;eCCOB, a TaKZN? BGXOj@I M3 OT,l&eJlbHEJX pe3~~bTaTO~ K~HeT~YeCKO~ iI CTaTKCT~qeCKO~ 

TeOpHui, IIPHBOAHTCR CElCTeMaTHYeCKOF? OIlEICaHMe FlBJieHHt nepeHOCa-TennOKpOBO~HOCT~ C 

YYeTOM KOHt?YHOt CKOPOCTEl pLIGIlpOCTp3HeHKFI Tt?IIJEt, ~t?JiaKCaI@Qi H&UlpfiHWHHfi B BRBKO- 

ynpyrllx TeJIaX, nepeHoca BnarE B xaminnflpHo-rropnewx Tenax, a TaIime npoqeeeoB 
TJ’p6yJIeHTHOrO IIepeHOCa. flpllrBep;eHhI HeKOTOphIe jN%IeHIlK rarrep6onMsecKoro YPaBHGHMFI 
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NOMENCLATURE s, entropy; 
thermal diffusivity (a = X/cp) ; T, temperature; 
degree of filling capillaries of a ‘7% molecular velocity; 
body with liquid; % internal energy or relative mois- 
specific heat ; ture concentration in a porous 
concentration; body (moisture content); 
capilfary diffusivity; rq, fluid flow velocity or propagation 
moisture diffusivity in a body, or velocity of stresses, heat or mass; 
mass diffusivity in a gaseous mix- _&, thermodynamic driving forces. 
ture flow; 
turbulent diffusivity; 
phase transformation number; 

Greek symbols 

shear modulus ; 
5 shear strain; 

specific heat or mass flux; 
z = da/dr, shear strain rate; 

capillary conductivity; 
% viscosity; 

direction of the normal to iso- 
0, contact angle; 

thermal surface; 
A, thermal conductivity; 

concentration of the i-th com- 
6% chemical potential of the i-th 

ponent ; 
component ; 

pressure or shear stress; 
fi, void fraction of a body; 

rate of time change of shear 
density; 

stress ; 
Fi , density of an absolutely dry 

specific heat flux; 
body; 

rate of time change of specific 
a, entropy production or surface 

heat flux; 
tension coefficient: 

specific heat of phase transfor- 2 
time ; 

mation; 
, capillary potential of a body. 

* Lecture delivered at the 2nd Ail-Union Heat and Dimensionless numbers 
Mass Transfer Conference at Minsk, 5-9 May 1964. LU, ratio of the moisture-content field 
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pn, 

Subscripts 
4, 
C, 
m, 

to the temperature field in a 
porous body 
(Lu = Dtnja = Dntcpojh); 
the Posnov number 
(Pn = S(u, - uo)/(Ta - To). 

thermal state; 
elastic state; 
characteristic of the mass of 
material or molecular character- 
istics; 
turbuIent properties; 
isothermal state; 
relaxation characteristics. 

1. PRINCIPLES OF THE THEORY 

THE THEORY of transfer processes covers such 
diverse phenomena as diffusion, heat conduction, 
thermal diffusion, electrical conduction, ab- 
sorption of sound waves, etc. 

Transfer phenomena occur in the system 
which, strictly speaking, is not in a state of 
thermodynamic equilibrium. Two types of 
transfer phenomena should be distinguished : 

Firstly processes taking place in the system, 
whose initial state is not that of equilibrium but 
which when left to itself passes to an 
equilibrium state. All relaxation phenomena are 
such processes. 

Secondly, processes taking place in the 
system where external effects (for example, 
temperature gradients maintained from the 
outside, variable external fields) prevent the 
equilibrium state from setting in. In the system 
which is affected by external effects, generally 
speaking a steady state sets in, which should be 
distinguished from that of equilibrium, 

The aim of the transfer theory is to investigate 
both these types of transfer process. 

There are three main methods of treating trans- 
fer processes. 

First, the kinematic theory which presents the 
most direct method of treatment of irreversible 
processes. Here from the very beginning, a 
certain particular model of the system is assumed. 
Probabilities of molecular collisions obtained 
with this model serve for the derivation of 
certain kinetic equations, for example, the 
Boltzmann equation. 

The second, rather general, method is the 
statistical mechanics of irreversible processes. 
Its aim is the development of a general formal- 
ism similar to the algorithm of the statistic sum 
in the statistical mechanics of equilibrium states. 
This formalism should make it possible to 
predict according to a certain procedure any 
macroscopic property of the system in which an 
irreversible process takes place. In this case no 
special model is adopted. With this approach, 
however, certain fundamental difficulties are 
encountered [I]. 

The last method, which is adopted in the 
present work, is used for studying transfer 
processes with the aid of the phenomenological 
theory of thermodynamics of irreversible pro- 
cesses, but requires the two other methods for its 
justification. 

The thermodynamics of irreversible processes 
is a powerful phenomenological method for the 
investigation of heat and mass transfer. It is 
widely adopted in macroscopic research on heat, 
mass and energy transfer. As was shown by de 
Groot [2], the equations of hydrodynamics of 
continuous media are obtained directly from 
the basic equations of non-equilibrium thermo- 
dynamics. Using these methods one can obtain 
equations of energy, heat and mass transfer for 
various systems including non-Newtonian fluids 
and disperse media, and derive some features of 
the turbulent heat- and mass-transfer theory. 
All these problems will be discussed in this 
paper. 

The basis of irreversible thermodynamics is a 
known equation relating the rate of entropy 
production to the fluxes dtS (for example, heat 
or diffusion fluxes, etc.) and the the~odynami~ 
forces _XZ giving rise to these fluxes (temperature 
gradient, concentration gradient, etc.): 

Equation (1.1) may be derived from the Gibbs 
equation : 

TdS= du +pdV- zpsdvli (1.2) 

Relations (1.1) and (1.2) assume that the en- 
tropy of the system, which is not in the equi- 
librium state, is determined by the same inde- 
pendent variables as in the equilibrium state. 
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The postulate (1.2) which shows the possibility 
of describing non-equilibrium states by vari- 
ables which are strictly speaking defined for 
equilibrium systems only, is not obvious. How- 
ever, as Prigogine has shown using kinetic 
theory, it is a rather good approximation when 
the deviations from the equilibrium state are not 
too large. 

For the transfer processes, the irreversible 
thermodynamics based on relation (1 .l) is re- 
stricted to the domain of validity of the linear 
phenomenological laws 

Jz = Z Lid (1.3) 
k 

where the phenomenological coefficients &k are 
assumed constant. This is important and should 
be remembered when taking into account in the 
essentially linear equations (1.3) the empirical 
dependence of the phenomenological coefficients 
&k on the variables which enter into the defini- 
tion of the thermodynamic forces. Strictly 
speaking, this is not correct within the frame- 
work of the thermodynamics of irreversible 
processes. 

Besides, there are reciprocal relations which 
follow from the microscopic reversibility: 

Lik = Lkt. (1.4) 

Conditions (1.3) and (1.4) are more severe than 
the conditions of validity of the Gibbs equation. 
From relations (1. I), (1.3) and (1.4) it follows 
that these coefficients determine the completely 
defined square form c L&&k b 0 for all & 

and in particular, Ll& > Lfk. 
Also, equations (1.3) should be co-variant, 

i.e. all their terms should be of the same tensor 
dimension. 

Relations (1.1-1.4) are usually applied to the 
steady-state transfer processes, but as de Groot 
has shown, they may also be used for low-rate 
steady-state phenomena. 

In high-rate unsteady-state transfer processes, 
the phenomenological coefficients entering re- 
lation (1.3) cannot be considered as constant. 
Therefore the basic requirement of linearity of 
the phenomenological transfer laws is not 
satisfied. The linear transfer equations change in 
this case into non-linear equations and relations 
(1 .l) and (1.3) must be examined more closely. 

Following Prigogine [3], we divide the total 
change of entropy production rate da for the 
time d7 into two parts: one, dzu, referring to the 
change of thermodynamic forces, the other, 
dJa, referring to the change of flux: 

do = d,o + dJo = 7 Ji dX< + C Xi dJi (1.5) 
f 

Prigogine has proved that when phenomeno- 
logical coefficients are constant and reciprocal 
relations are valid, the contribution to the rate of 
entropy production due to the change of 
thermodynamic forces is equal to that due to the 
change of fluxes Jt. 

Thus, 
d zu = dJa = 3 da (1.6) 

In the whole region of validity of irreversible 
thermodynamics, the relation 

dzu <O (1.8) 
holds. 

In transient high-rate processes the fluxes Ji 
are related to their thermodynamic forces xk by 
certain non-linear equations, the form of which 
is, generally speaking, unknown. If, however, the 
deviation from the equilibrium state is not very 
large, these non-linear laws may be approxi- 
mately expressed in the following way: 

Ji = Lr’j, + T (L&-k + LLkif-k) (1.9) 

where Ly), Llk and Li, are constant phenomeno- 
logical transfer coefficients. In steady-state 
transfer processes zi = Jt - 0 and an ordinary 
linear equation is obtained from equation (1.9) 

Ji = c LikXk. 
k 

If the rate of change of the thermodynamic forces 
is small, equation (1.9) may be written as 
follows 

Jt = Lr’i + CL&k (1.10) 
k 

where LIT) is measured in time units and may be 
called a relaxation coefficient. Such a situation 
occurs, for example, in heat-conduction pro- 
cesses in those cases when the time L:‘) is com- 
parable with the time of the unsteady-state 
heat-conduction process (see Section 3). 
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Sometimes, for example, in describing 
moisture transfer in a capillary-porous body, the 
terms containing the time derivatives of the 
thermodynamic forces should also be taken into 
account. 

2. RELAXATION OF STRESSES IN 

VISCO-ELASTIC BODIES 

As the first illustration and to explain the 
physical significance of the additional terms 
entering equation (l.lO), we shall consider the 
momentum transfer of regular motion in visco- 
elastic (non-Newtonian) fluids. 

A hundred years ago Maxwell assumed the 
absence of any essential differences in the 
mechanical properties of viscous fluids and 
solids on the basis of the relaxation concept. 
Relaxation is a progressive resolution of elastic 
stresses with a constant prescribed strain, i.e. 
a progressive dissipation by transformation into 
heat of the elastic energy in a body under strain. 
Relaxation processes are inseparably connected 
with random thermal molecular motion. Shear 
stresses pax in a visco-elastic body relax over a 
time interval 7r at a certain finite rate wr. 

We shall assume that the relaxation of the 
internal stresses ~fk follows the Maxwellian law 

pit = pi,@) exp (2.1) 

where 7,. is the relaxation time which equals the 
ratio of the viscosity 7 to the shear modulus 
G(T, = y/G). Thus in a visco-elastic body, shear 
stresses relax at a rate which is inversely pro- 
portional to the viscosity: 

k. (2.2) 

In an elastic body the shear stresses remain 
constant (pi& = pa&O)), or the relaxation time 
~-r + co. Thus, if Q + co, then the liquid behaves 
like an amorphous solid. 

Newtonian fluids may be considered as 
visco-elastic bodies with relaxation time r+- + 0, 
or with the relaxation rate wr + co. Thus, if 
7r -+ 0, a body behaves as an ordinary viscous 
fluid. For such fluids, shear stress is directly 
proportional to the viscosity and to the rate of 
shear strain dak (the law of viscous flow). Indeed, 

for an incompressible parallel plane flow the 
shear stress may be written as follows: 

a all 
=“a7 --x ( 1 (2.3) 

= +12 

In this case it is assumed that 

awl aw2 
axs%T 1 

In high-rate transient flows a viscous fluid 
behaves as a visco-elastic body. Newton’s law 
(2.3) of viscous flow is therefore not valid and 
instead the relation (1.10) should be used. This 
may be written as follows: 

rl . 
pik = +ik - T&k = +ik - $‘ik (2.4) 

assuming the flux to be ecpd to pik, ilk to the 
thermodynamic force, ,511 = 7, i.e. to the 
viscosity, and Ly' = -TV i.e. to the relaxation 
time. 

If the relaxation time is short 

(Tr +o), 
then from equation (2.4) the law of a viscous 
flow is obtained. If the viscosity 7 is large 
(7 + co), then from equation (2.4) Guck’s 
equation of elasticity is obtained 

1 
iik = - ,& (2.5) 

whence 

pik = G<fk: = ,0$& (2.6) 

Here wC is the velocity of propagation of shear 
strain or the velocity of cross-wave propagation 

WC = ~‘(G/P) (2.7) 

where p is the density. 
In high-rate unsteady-state flows the value of 

?-r&k is comparable with that of +k, so that 
equation (2.4) rather than (2.3) should be used. 
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For more complex structural systems the flow 
law is described by a more complex equation 
(1*9). For example, Oldroyd [4] has theoretically 
obtained a flow equation for a visco-elastic 
system consisting of emulsions and suspensions 
of one Newtonian fluid in another in the follow- 
ing form 

p&k = +$k + r)‘&K - T&k (23) 

Oldroyd’s equation is identical with equation 
(1.9) at L = q, L’ = v’, L(r) = -TV. 

Returning to equation (l.lO), it should be 
emphasized that the additional term Lg”& 
characterizes the finite velocity of propagation of 
stresses in a body or a body system. 

3. HBAT TRANSFER 

Similarly, in high-rate unsteady-state transfer 
processes instead of the linear heat-conduction 
Fourier iaw 

In the classical heat-conduction theory it is 
assumed that heat propagation velocity wQ is 
infinitely large (We + co). Assuming wg -+ ‘30, 
from equation (3.5) we obtain the Fourier heat- 
conduction law which corresponds to the case 
when the relaxation time of heat stress is assumed 
to be zero (7,. = 0). 

With high rates of change of the heat-flux;, 
the second term in equation (3.5) becomes 
comparable with the first one and cannot be 
neglected. 

If the heat-conduction coefficient is large 
(h -+ co), or volumetric heat capacity is small 
(cp + 0), then from equation (3.5) we obtain 

T 
q fNJ cpw2,- 

Wt 

J, = L,,& = - NT, 

one should use relation (1.10) viz. : 

(3.1) where upt is the propagation velocity of the 
isotherm, proportional to thermal diffwsivity. 
The form of equation (3.6) is similar to that of 

Jn = L;)& + LpQXQ 

which we may write in the form 

- __x?!= -k 4= 
8; 

- Trq 

(3 2j equation (2.6) which describes stress propaga- 
tion in a body with a very long relaxation time 
(rr --f a). 

On the basis of equation (3.5), we may obtain 
the differential heat-transfer equation. fndeed, 

(3.3) eliminating the flux q from the heat-balance 
equation for a one-dimensional problem 

where h is the heat-conduction coefficient, and 
I,(?’ = 
sttess. 

- rr is the relaxation time of the thermal 

Relation (3.3) has been obtained in [7--g] for 
the case of heat transfer and diffusion. The 
finite velocity of heat propagation w, is 

W@ = y’(airr) = ~(~I~~T~) (3.4) 

where a = (h/cp) is the thermal diffusivity. For 
nitrogen wq = 150 m/set, and 7,. = 10-s s 
while for metals T? is even smaller, for example, 
for aluminium 7,. = lo-11 s. Therefore in these 
cases experimental measurement Of Ty iS im- 

possible. For gases, however, under the con- 
ditions of rarefied supersonic flow, the effect of a 
finite velocity of heat propagation on heat 
transfer becomes pronounced. 

Equation (3.3) may be written as follows 

(3.7) 

and from equation (3.5), we obtain 

4T ST ST 
i%+ Trjgi= aaxz 0.Q 

Equatian (3.7) is of hyperbolic type and allows 
for the effect of heat propagation velocity. 

With low gas pressures when the value of 
volumetric heat capacity is small (cp -4 O), heat 
is transferred by the molecular mechanism. In 
this case the length of the mean molecular free 
path determines the value of the thermal con- 
ductivity and the heat propagation velocity. 
Then the first term may be neglected and we 
shall finally obtain the heat-transfer equation in 
the form 
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0.9) 

This relation holds for gases under the con- 
ditions of supersonic flow with small rarefactions. 

In Appendix I it is shown that the heat- 
transfer equations are of hyperbolic type if they 
are to account for a finite heat-propagation 
velocity. This result follows from the kinetic 
theory by the solution of the Bolzmann equation 
by Grad’s method 191. 

Finally, it is of interest to show the analogy 
between the results presented here and the 
known case of calculation of the finite heat- 
propagation velocity (the Zeldovich-Kom- 
paneets temperature waves [lo]), where it is 
derived from a power function dependence on 
the thermal properties of the medium on 
temperature. 

4. MASS TRANSFER IN COLLOIDAL 
CAPILLARY-POROUS BODIES 

Moist materials are hydrophilic capillary- 
porous bodies. In such bodies osmotic bound 
moisture and adsorption bound moisture are 
transferred by molecular mechanism according 
to Fick’s diffusion law. As in the case of 
molecular heat transfer, it is assumed that the 
mass velocity is infinite. This assumption in the 
analytical diffusion theory does not affect the 
final results, since the relaxation time in 
molecular mass transfer is approximately of the 
same order as the relaxation time for heat 
transfer. 

However simultaneously with moisture 
diffusion in colloidal capilla~-porous bodies a 
slow motion of the moisture occurs due to 
capillary forces. Usually the capillary motion of 
moisture in a polycapilla~-porous body is well 
described by the moisture-transfer law, which is 
analogous to the diffusion law (capillary di- 
ffusion). The capillary potential is assumed to be 
a continuous function of the moisture content 
of the body, so that the gradient of the capillary 
potential is proportional to the gradient of the 
moisture content. Thus the capillary-moisture 
flowjcap will be 

jctap = kVlCr (4.1) 

where k is the capillary conductance which is 
equal to 

r 

k = {f s rzf(r) dr (4.2) 

f(r) is the differential cmve of the distribution of 
the pore sizes by their radius Y which varies in a 
body from a certain minimum value YO to a 
maximum one r at the given moisture content M 
(the maximum radius of capillaries fiiled with 
liquid). 

Under isothe~al conditions the gradient of 
the capillary potential V$ is proportional to the 
gradient of the moisture content Vu, so that we 
may write 

-_, 
jcap = - DWPOVU (4.3) 

where Dcap is the capillary diffusivity equal to 

7 

D - 

ocose 
cap 47$7(r) s r2f(r) dr (4.4) 

7. 
where D is the surface-tension coefficient, and 8 
the contact angle between the capillary walls 
and the liquid. 

Formula (4.3) is valid for a porous body of the 
polycapillary structure. For a monocapillary 
body f(r) + ~0, and therefore k --f co, and 
VJ, + 0. In this case the flow of capillary- 
moisture will be 

where II is the void fraction of a 
degree of filling of the capillaries 

wear, the mean liquid velocity in a 
monocapillary structure. 

(4.5) 

body, b the 
with liquid, 

body of the 

Formula (4.3) is similar to Fick’s equation for 
osmotic-moisture diffusion. It is assumed that the 
velocity of propagation of moisture is infinitely 
large as in the case of heat propagation. In 
reality in colloidal capillary-porous bodies, the 
moisture (liquid) velocity is of the order of 
2 x 10-s m/s to 5 x IO-sm/s, while the moisture 
diffusion coefficient D, for various bodies 
ranges from l-4 x lO-s m/s to 30 x 10es m/s 
[ll], Thus the relaxation time rrn will be of the 
order of O&1*2 x lo-4 s, i.e. it is as much as 
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W-f07 times larger than that for heat transfer in 
gases and metals, 

Consequently, the moisture transfer in a 
colloidal capillary-porous body of the poly- 
capillary structure must be described by means 
of the generalized moisture transfer law (l.lO), 
Le. 

;= - D,p&x G 
- TV& 

aT 
(4.6) 

where D, is moisture~diffusio~ coefficient, 7na 
the time of moisture propagation in a capilfary- 
porous system, which equals 

If the capillary walls are slightly hydrophilic, 
then the capillary diffusivity of moisture may be 
assumed very large. From formula (4.6) we 
obtain 

If we substitute from (4.6) for j and assume 
~rrn = &lw,2, constant, we obtain the differ- 
ential equation of mass transfer in a colloidal 
capillary-porous body? 

This equation differs from the ordinary moisture- 
transfer equation by the additional term 

Z%# 
Tr= Jr% 

which characterizes capillary motion of moisture. 
In the case of non-isothermal conditions the 

differential equation of moisture transfer in 
colloidal capillary-porous bodies is of the form 

al6 1% j30 _ -- --- = - 
-poZG M:;m a7 D, * (4.7) 

Denoting the linear velocity of the isoconcen- 
tration surface (the surface inside a body with 
equal relative concentration u) by ML = dR/dr, 
we obtain from (4.7) 

W2 
j = po$Au 

where Au is a certain fixed difference of moisture 
contents. 

For a porous body of monocapillary structure 
we may approximately assume wrm = wu, and 
dz~ is equal to the maximum moisture content 
u&Abu = urn), so that from formula (4.8) we 
obtain 

f = P~W~~~rn (4% 

i.e. relation (4.71, since in this case poUrn = flpb. 
Thus for porous body of a monocapillary 

structure the mass-transfer rate Wrm is approxi- 
mately equal to the rate of capillary-propagation 
(W7& = wcap). 

Besides, it follows from the above analysis 
that formula (4.6) describes moisture diffusion 
when the moisture propagation,velocity due to 
capillary penetration is finite. 

On the basis of moisture-mass conservation 
law for a one-dimensional problem, we have 

KM,-K 

where S is the thermogradient coefficient equal 
to the ratio of the coefficients of thermal 
diffusion in moisture and of moisture diffusion. 

This equation should be soIved simultaneously 
with the heat-conduction equation for a moist 
body 

8T 3T L au - = az2 + E-g 7T 
aT 

(4.13) 

where L is the specific heat of phase conversion 
and E is the phase conversion number. 

The set of differential equations (4.12)-(4.13) 
has been solved by Luikov and Perelman for the 
boundary conditions 

.-~ = 0, u(0, T) = ua 
aT 

(4.16) 

-. .- 
t The case when the capiIlary mass-transfer rate IV,.= 

varies with p&ion is discussed in Appendix IL 
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The analysis of the solution obtained shows 
that thermal diffusion of moisture has a con- 
siderable influence on the capillary moisture 
transfer at the finite rate wmt. As an ilIustration 
we shall present the solution of the above 
problem (4.12-4.17) for a particular case of 
isothermal moisture transfer (S = 0) with no 
phase changes (E = 0). In this case the solution 
may be written as follows 

where r* = r/rmt is the dimensionless time, [ is 
a quantity equal to 

(4.19) 

while H{T*) is equal to 

i 0 at 3 
W+) = 1 at 

< 0 
7* > 0 

(4.20) 

Formula (4.18) describes moisture transfer at 
a finite rate (at T* > f). Moisture reaches the 

point x at a time 7 > -<!) X. At points farther 

removed from the sur;ce moisture is still 
absent [H(T* - E) = 01. 

The solution of the problem with 
large moisture-transfer rate (Q.~ = 0) 
to be of the form 

infinitely 
is known 

(4.21) 

Solution (4.21) differs from solution (4.18). They 
coincide only at 7 --f 00. For T* -+ co we obtain 
from solution (4.18) 

g”=l-- 
x yT* -I- . . . = I - --~-- 4 

yin&p -. * 

(4.22) 

which is identical with (4.21) at T + co, 
Thus, the generalized relations of thermo- 

dynamics of irreversible transient transfer pro- 
cesses can describe the capillary-djffusion transfer 
in moist materials. 

To conclude this section it should be noted 

that, as estimations have shown in a number of 
cases of moisture transfer in a complex and 
tangled system of capillaries, to which type 
belong a capillary”porous body, the terms con- 
taining the time derivatives of the thermo- 
dynamic forces should also be included [see 
equation (I .9)]. 

5. ABSENT HEAT- AND M~~~NS~R 
PROCESSES 

Transport phenomena, e.g. of heat, momen- 
tum and mass, are of fundamental importance 
in turbulent flow. Because of the special treat- 
ment of the subject in this paper and the 
shortage of space, only a very brief summary will 
be given now of the information obtained con- 
cerning the theory of turbulent transfer incmding 
the finite velocities of propagation. New methods 
of description of the processes of turbulent 
transfer will be published elsewhere. 

Typical of the transfer processes in turbulent 
flows is the great variety of scales of the turbulent 
motions that stir the medium. The character of 
the turbulent transfer is determined by the 
energy distribution between the turbulent mo- 
tions of different scales. The largest of the motion 
scales which contains almost the whole energy of 
the stream is called the scale of turbulence, I. 
The values of fluid velocity at points distance 
from each other by no more than 1, are statisti- 
cally interconnected. Therefore the particles of 
liquid or admixture, the distance between which 
does not exceed E, will not move independently 
of each other. This breaks the analogy between 
turbulent and molecular transfer. 

As a rule, however, the region in which 
transfer occurs is considerably larger than the 
scale of turbulence. In such cases the description 
of turbulent transfer by analogy with the 
molecular transfer may be justified if account is 
taken of some peculiarities which will be dis- 
cussed below. 

Now let us consider the extent of the validity 
of the analogy between molecular transfer and 
transfer with small-scale turbulence [12]. 

Random molecular motion may be character- 
ized by the mean molecular velocity una and the 
length of the mean free molecular path 1,. These 
quantities define the diffusion coefficient (or in 
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the case of beat transfer, the thermal conduc- 
tivity) 

Dm f Nomm (5.0 

which is the proportionality factor between the 
flux of mass (or heat) and the gradient of its 
concentration (or temperature). 

Similarly, the random turbulent motion may 
be characterized by the mean value v of the 
turbulent velocity fluctuations (which are a 
measure of the intensity of turbulence and by the 
turbulence scale f of the “mixing length” type 
introduced by Prandtl). We may define the 
turbulent diffusivity as 

DT -VI (5.2) 

which is the proportionality factor between the 
mean turbulent flow of the substance transferred 
and its average concentration 

J = - D#cS (5.3) 
where 

J=m (5.4) 

(the prime indicates deviations from the mean 
value). 

If we accept the diffusion law expressed by 
formula (4.3), then, using the continuity equa- 
tion for the transferred substance, we obtain 
the ordinary (parabolic) form of the diffusion 
equation. However, there is a tremendous 
difference between the scales of motion in the 
molecular and turbulent processes. In molecular 
diffusion, for example, we have: 

%I8 * IO* cm/s tm (51 lO-5 cm 

D7n - 10-l ems/s 7% - lo+ S 

Whereas for turbulent motions the acceptable 
values of turbulent pulsations are N 10 per cent 
of the mean velocity and lie within the range 

v - I-102 cm/s, I N l-103 cm, 

Hence 
DT N l-105 cm/s 

9-r - 10-3-103 s. 

It follows from the above estimations that, 
firstly, in the majority of the problems of 
turbulent transfer, the molecular processes may 
be neglected (DT $. D& 
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Secondly (and this is even more important) 
there is a quahtative difference in the description 
of turbulent transfer, since because of the very 
large difference in the scales and velocities, the 
parabolic equations usually employed for the 
description of the molecular transfer and derived 
with the assumption that molecular velocity is 
infinite are not valid. The validity of parabolic 
transfer equations decreases with increasing 
effective velocities of the diffusing substance (or 
heat). 

Therefore the parabolic equation of turbulent 
diffusion which indicates that an arbitrary 
disturbance will be felt, even to a very small 
degree, at any distance, however large, from the 
source, must be replaced by the hyperbolic 
transport equation. 

Using again the equation of irreversible 
thermodynamics relating the fluxes and thermo- 
dynamic forces as modified above for the 
unsteady-state processes, we obtain for the case 
of isotropic turbuIence 

8% ac 
‘rv+-= a7 

If DT is variable, then the 

a2c 
DTayz (5.5) 

term on the right- 
hand side becomes of the form 

Equation (5.5) was derived by Goldstein [13] 
(see also [14]) by considering the known problem 
on random walks, In the same work the corre- 
lation for the case of non-isotropic turbulence is 
presented. 

In the problem of random walks the Mar- 
kovian stochastic processes of various orders 
may be considered. 

An ordinary diffusion equation may easify be 
derived with the assumption that diffusing 
particles move at random, their co-ordinates 
changing in time following the law of the 
Markovian stochastic process of the first order. 
Then the diffusion equation is Kolmogorov’s 
equation for this stochastic process, 

This procedure is insufficient and too simple 
to be applied to turbulent transfer processes. 
Probability of the position of a transferred 
substance particle in turbulent transfer depends 
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at any moment 7 not only on its position in the 
previous moment, but on some portion of the 
previous path of the particle. If we restrict 
ourselves by the Markovian process of the 
second order, then a transfer equation of the 
hyperbolic type is obtained. 

There exists another more simple derivation of 
hyperbolic transfer equation from a generalized 
equation of Focker-Plank in a phase space 
fl51. 

In conclusion it should be emphasized that 
equation (5.5) is hyperbolic, which shows that 
the term 

a2c 
rr G-2 

is important irrespective of the order of its value, 
since it contains the higher derivative and thus 
determines the type of the equation which 
changes the character of the solution. Let us 
compare the behaviour of the solutions of para- 
bolic and hyperbolic transfer equations when, 
for example, at the initial moment in a finite 
space there is a source of the form 

We have 
C(O, Y) = cow* (5.6) 

C&y, T) - -$$;;exp 
Y2 

( ! 
_ .-...-. 

2DTT (5*7) 

and from equation (5.5) it follows respectively 

Ch(y, T) = CO ;ko e-*/27o b0( Y) 

where 

lo(Y) and Il( Y) are the modified Bessel functions 
of the zeroth and first orders. With small values 
of time, the behaviour of solutions (5.7) and 
(5.8) is essentially different. It is a fundamental 
fact that, as it follows from equation (5.7), 
diffusion occurs following the law d? N do, 

while from equation (5.8) we have qp N r. At 
T -+ co (5.7) approaches as~ptoticaily (5.8). 

Some notes are given below on the possibility 
of the generalization of the hyperbolic transfer 
equations for the case of more than one- 
dimensional (three-dimensional) problems. 

For the derivation of the equations describing 
transfer with the assumption of a finite propaga- 
tion velocity of the substance in a three-dimen- 
sional case, an essentially more complex three- 
(or two-) dimensional ~arko~an process should 
be considered. We may show that the transfer 
equation will not be differential any more but 
integro-differential. The integral operator in this 
equation cannot always be expressed in the form 
of time derivatives of different orders. It may be 
shown (we shall not do this because of the lack 
of space) that in the simpliest case of two- 
dimensional diffusion the turbulent transfer 
equation may be formulated as a di~erential 
equation of the type (5.5), provided only that 
%N - 7?3i)Y which occurs, for example, in 
isotropic turbulence. 

In conclusion, it may be pointed out that the 
methods of irreversible thermodynamics are of 
great significance for research on interconnected 
heat and mass transfer processes. Further de- 
velopment of these methods in view of their 
application to high-rate unsteady-state transfer 
processes becomes an urgent task in the general 
study of heat and mass transfer. 
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whereptj is the stress tensor. The third convolute 
moment St = C St!! which equals the doubled 

heat flux qr is oi? important physical significance. 
Therefore instead of approximation (1.3) the 

incomplete third approximation is used 

which is written as 
APPENDIX I 

The Boltzmann equation is valid for rarefied 
gas where only double molecular collisions are 
possible. With no external forces it is of the form 

f=f'O' 
' + 2pRT 

_-!c?!- C&j 

i,f 

cI.1) 
-&G(l-&)}, (Ci=h-w*) (Is) 

Here f(;, 2, T) is the distribution function of 
mass density; fC is the integral of collisions 
depending on the law of molecular interaction. 

Grad proposed to use the Hermite poly- 
nomial expansion of the distribution function f 
taking as a weight function the equilibrium 
Maxwellian function f (0) 

Substitution of this expansion into the Boltz- 
mann equation leads to an infinite system of 
differential equations. The proper approxima- 

Thus the parameters of state of the system are 
taken to be the momentum components, p, T, 
wg,pi3, qg ; there are all together thirteen of these. 
Stresses and heat fluxes are examined together 
with the variables p, T, wr. 

The system of equations of the 13 momenta 
includes equations of mass, momentum and 
energy conservation as well as equations for 
stresses and heat flux 

ap 
P c gr Wr) = 0 (I.cj) 

t 

2+ CC W 1 apI, 
wrz “j T& =o (1.7) 

> 
r 
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U-8) 

+ #Sfw=O 

where pt~ = Ptr - p&r. 
Here j3 is the collision parameter. The equa- 

tions of 13 momenta are of a hyperbolic type. 
The time derivative entering these equations 
requires definition of particular initial conditions. 

In the case of slowly changing flows the 
dependence on the initial conditions may be 
neglected. The time of formation of fully- 
developed (quasi-equi~brium) flow is consider- 
ably shorter than the time when the system 
reaches the equi~brium state. In the cases when 
these two time scales are comparable, the flows 
should not be considered as developed; the time 
derivative should play an essential role here. 

Let us consider, for example, the undeveloped 

heat flux in a stationary gas (z = 0) when pi1 
and qs depend solely on the time. We shall arrive 
at the following system of equations: 

ap 0 -=: 
a?. (I.11 

(1.13) 

(1.14) 

-i- SsPqs = 0 (1.15) 

Hence the pressure p is constant; stresses pgr 
decay according to the exponential law 

pbj(7) = ~49 e--BP7 (1.16) 

(see also Section 1). 
For a heat flux we shall obtain from the latter 

equation 

+ QBP4S = 0 (1.17) 

Another possible form of it is 

which coincides with (3.3). The quantity A = A$‘. 
pR/flp is the heat-conduction coefficient which 
usually enters the set of equations for a continuous 
medium. The quantity l/@?j~p has the meaning of 
a relaxation time. 

APPENDIX II 

For a number of capillary-porous bodies the 
velocity of moisture capillary motion wcap is 
inversly proportional to the length of the 
motion path X, wcai, = (a~/,$, where a~ is a 
certain constant which depends on the void 
fraction of the body, its capillary properties and 
the liquid viscosity. Assuming to the first 
approximation wCtlP = wrm, we obtain the 
following relation for the moisture flow 

j= 
au D,x2 aj 

-D,poa, - ___ - 
a2 0 a7 

(11.1) 
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Using the moisture balance equation with the condition 

(11.2) 
f(co) = 1, f(0) = 0, f’(0) = 0 (11.9) 

The solution of equation (11.8) with initial con- 

we obtain the differential equation of moisture ditions (11.9) may be written as 

transfer for the mass flow under isothermal 
conditions in the following form f(5) = 0 at 0 < t < 1 

1 

Let us consider the boundary-value problem d7 at .$ > I J 
for a semi-infinite body when a constant 
moisture flow jo comes through its open surface where 

i(O, 7) =j0 j(M3, T) = 0 (11.4) 
a0 

a = 40, 

j(x, 0) = 0 rz,I(o, = 0 
ar 

The sofution is found in the form 

(11.5) The integral entering (11.10) may be expressed 
by hypergeometric functions. The cases a $ 2 
and a 6 2 may easily be considered and for a 
particular case a = 3 we obtain 

where 

Ax, 4 = j0.M) 

.C- = 2&s 

(II.6) j(x, T) = js 

(II.7) at xs < 28e7; (11’12) 

In this case we obtain the differential equation APPENDIX IfI 

The solution of the system of differential 

(P - l)j“‘(~)+ (;c-$$‘(@=O (Kg) equations (4.12-4.13) with boundary conditions 
(4.14-4.17) and with no phase conversions 
(E = 0) is of the form 

u - 240 u* = ___.- 
Ua - UO 

=H(T* - t){[l - E$l - exp[-(1 - L~)(T* - ,$)I)] e-65 + 

T* 

+ LuPn 
s 

exp [ - (1 - Lu)(~* - u)] erfc (III. 1) 
a 
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where 

ZZ(7*) = 
i 

5 = ~ly’JA?mn Solution (111.2) may be written in another form 
II(U) is the modified Bessel function of the first 
order. The last summand in formula (111.1) 
is not zero at T* > 0 and governs thermal u* = H(T* - 5) e-7*2 

diffusion moisture transfer. If moisture is II 
transferred at a constant temperature, Fn is 
zero (Pn = 0). Then from soiution (111.1) we sin (y’[z( I - z)J@, (111.3) 1 
obtain 

which is presented in Section 4 (see formula 
4.18). 

Abstract-On the basis of a phenomenological theory-the thermodynamics of irreversible processes- 
and using particular data of kinetic and statistic theories, a systematic description is presented of 
transfer phenomena: heat conduction with a finite velocity of heat propagation, relaxation of stresses 
in v&o-elastic bodies, moisture transfer in capillary-porous bodies as well as turbulent-transfer 

processes. Particular solutions of a hyperbolic mass-transfer equation in porous bodies are given. 

R6sumt5-Sur la base dune theorie phenomenologique-la thermodynamique des processus irrtver- 
sibles--et en employant les don&es particulieres des theories cinetiques et statistiques, une description 
systtmatique dee phenomenes de transport est present&e: la conduction de la chaleur avec une vitesse 
finie de propagation de la chaleur, Ia relaxation des contraintes dans les milieux viscoelastiques, le 
transport de ~hu~~t~ dans ies milieux poreux~pi~aires aussi bien que les processus de transport 
t~bulent. Des SoIutions dune equation hy~rbolique de transport de masse dans les milieux poreux 

sont don&es. 

ZnsammenIhasnng-Auf Grund einer phtiomenotogischen Theorie-der Thermodynamik irreversibler 
Prozesseund unter Beniitzung spezieller Daten der kinetischen und statischen Theorein wird eine 
systematische Beschreibung der Transportphtinomene gegeben : Warmeleitung mit endlicher 
Geschwindigkeit der Warmeausbreitung, Spannungsabbau in visco-elastischen Korpern, Darnpf- 
transport in kapillar-poriisen KSrpern und turbulente Austauschprozesse. Partikulare Losungen 

einer hyperbolischen Stofftransportgleichung in porosen Kljrpern sind angegeben. 


